Conclusions

The catalytic importance of the trans-electronic effect in coenzyme B_{12} dependent mechanisms is questionable in light of the magnitude of the calculated effect on the Co-C reduced overlap population observed in the present model. Additionally, the slight Co-C weakening brought about by Co-N_{trans} lengthening could be virtually offset by the electronic effects resulting from any slight corrinoid pucker (conceivably brought about through the binding of coenzyme to apoenzyme) analogous to that modeled herein. In view of the observed activity of cobinamide coenzyme (coenzyme B_{12} less the distal nucleotide loop),²⁹ the theoretical and experimental importance of the trans-electronic effect, as well as the trans-steric effect, in the holoenzyme appears to diminish. Likewise, since these results suggest that simple corrinoid distortion about the central metal ion does not serve to weaken the organocobalt linkage on purely stereoelectronic grounds, any possible catalytically important corrinoid distortion likely involves Co-C activation brought about through straightforward steric interactions rather than underlying electronic effects. Indeed, recent experiments³⁰ demonstrate that in model compounds possessing phosphine ligands trans to the Co-C bond, organometallic dissociation is by far more dependent on steric bulk of the trans ligand rather than its basicity; the steric effect, albeit a trans-steric effect,

nearly masks the electronic effect. Additionally, Halpern and colleagues propose a cis steric interaction between the 5'-deoxyadenosyl group and the corrinoid macrocycle to be responsible for the relatively low dissociation energy of the coenzyme.⁷

The importance of steric effects in coenzyme B_{12} and model systems is obvious from the results of these calculations as well as the experimental data. The Co-C overlap population, and hence the Co-C bond strength, reflect a sensitive dependence to the $C-Co-N_{eq}$ angle. Also important is the approach of a steric "push", which not only could serve as the initial means for the angular distortion of the Co-C bond but also could serve in and of itself as an electronic effector, decreasing the Co-C overlap population by means of associated electronic effects. Steric interaction as calculated here serves to bring about significant antibonding interaction between the cobalt-bound carbon and the offending atom(s); in turn, the Co-C bonding population decreases, and in the model system it is only this linkage which is weakened by such an effect.

It appears that the Co-C linkage is electronically susceptible to the onset of steric crowding directed at the cobalt-bound carbon. It is therefore likely that steric interactions, very possibly inducing the angular distortion of the Co-C bond, and the accompanying electronic phenomena herein described are primarily responsible for the initial homolytic activation in enzymatic mechanisms dependent on coenzyme B_{12} .

Acknowledgment. This work was supported in part by NIH Grant GM 06920. The helpful comments of Prof. Jack Halpern are gratefully acknowledged, and one of us (D.W.C.) thanks AT&T Bell Laboratories for a doctoral fellowship.

Ab Initio MO Study of the Coordination Modes and Bonding Nature of Rh^I-N₂ Complexes

Shigeyoshi Sakaki,*^{1a} Keiji Morokuma,^{1b} and Katsutoshi Ohkubo^{1a}

Contribution from the Department of Synthetic Chemistry, Faculty of Engineering, Kumamoto University, Kurokami, Kumamoto 860, Japan, and Institute for Molecular Science, Myodaiji, Okazaki 444, Japan. Received March 29, 1984

Abstract: An ab initio MO study of RhCl(PH₃)₂L (L = η^1 -end-on N₂, η^2 -side-on N₂, C₂H₄, CO, HCN, HNC, and NH₃) is presented. Two coordination modes of N₂, η^1 -end-on and η^2 -side-on, are compared. Though both coordination modes have the similar degree of back-donative (Rh \rightarrow N₂) interaction, the η^1 -end-on mode receives much larger electrostatic stabilization and slightly larger donative (N₂ \rightarrow Rh) stabilization, and as a result, the η^1 -end-on mode is more stable than the η^2 -side-on mode. The bonding nature and electronic structure of the η^1 -end-on N₂ complex are also examined: The π -back-donative interaction contributes to the N₂ coordination more strongly than the σ -donation, and the relative importance of the π -back-donation to the σ -donation is larger in the N₂ coordination than in the coordination of similar ligands, such as CO, HCN, and HNC. The coordinate bond of Rh(I) complexes is compared with that of Ni(0) complex, and $RhCl(PH_3)_2$ is suggested to possess versatile ability to form coordinate bond with various ligands.

Since the first synthesis of $[Ru(NH_3)_5(N_2)]X_2$ (X = Cl, Br, or I),² many transition-metal dinitrogen complexes have been synthesized and investigated actively.³ Interests found in the chemistry of dinitrogen complexes are summarized as follows: (1)

How does the inert N_2 molecule coordinate to transition metal? (2) Why is the η^1 -end-on N₂ coordination usually found but the η^2 -side-on coordination not common? (3) How can the N₂ ligand be reduced to N_2H_4 (or further to NH_3) under mild condition?

Recently, several MO studies of N₂ complexes have been carried out. Veillard⁴ and Hori et al.⁵ reported that the η^1 -end-on N₂ complex was more stable than the η^2 -side-on N₂ complex, and Lauher and Hoffmann⁶ discussed the condition allowing the η^2 -side-on N₂ coordination. For η^1 -end-on N₂ complexes, Murrell et al.^{7a} showed that the electron distribution was very sensitive

⁽²⁹⁾ Kato, T. et al. J. Vitaminol. Kyoto 1964, 10, 89, cited in Toraya, T.; Fukui, S. "Structure-Function Relationship of Vitamin B₁₂ Coenzyme in the Diol-Dehydrase System", in "Biomimetic Chemistry", Dolphin, D. et. al., Eds., American Chemical Society: Washington, 1980; Adv. Chem. Ser. No. 191. (30) Ng, F. T. T.; Rempel, G. L.; Halpern, J. Inorg. Chim. Acta 1983, 77, L165.

^{(1) (}a) Kumamoto University. (b) Institute for Molecular Science. (nb) Institute for Molecular Science.

⁽²⁾ Allen, A. D.; Senoff, C. V. Chem. Commun. 1965, 621

⁽³⁾ For example: (a) Taqui Khan, M. M.; Martell, A. E. "Homogeneous Catalysis by Metal Complexes"; Academic Press: New York, 1974; Vol. I, Jall, (b) Allen, A. D.; Harris, R. O.; Loescher, B. R.; Stevens, J. R.; Whiteley, R. N. Chem. Rev. 1973, 73, 11. (c) Sellmann, D. Angew. Chem., Int. Ed. Engl. 1974, 13, 639. (d) Chatt, J.; Leigh, G. J. Angew. Chem., Int. Ed. Engl. 1978, 17, 400. (e) Chatt, J., da Camara Pina, G. L. M., Richards, R. L., Eds. "New Trends in the Chemistry of Nitrogen Fixation"; Academic Press. J. and n. 1980. Press: London, 1980.

⁽⁴⁾ Veillard, H. Nouv. J. Chim. 1978, 2, 215.
(5) Hori, K.; Asai, Y.; Yamabe, T. Inorg. Chem. 1983, 22, 3218.
(6) Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1729.

to the kinds of metals and ligands, and Ondrechen et al.7b proposed that the η^1 -end-on N₂ coordinate bond was contributed from the significant σ -covalency and the strong π -back-donation. Also, Hori et al. have discussed the N₂ reduction on transition-metal complexes.⁸ However, some problems concerning the abovementioned coordination bond and coordination modes of N2 remain unclear. For examples, (i) the η^1 -end-on N₂ coordinate bond has been discussed in terms of the σ -donation and π -back-donation, like the Dewar-Chatt-Duncanson model proposed for the olefin coordination. In this regard, several experimental results, such as the relative stability of η^1 -end-on and η^2 -side-on modes, and ESCA⁹ and dipole moment measurements,¹⁰ have been explained by considering the σ -donation and π -back-donation. But, the nature of N₂ coordinate bond has not been made clear sufficiently; it has been ambiguous how the η^1 -end-on N₂ coordinate bond is characterized in comparison with the other similar ligands such as CO, HCN, and HNC and what difference can be found between the η^2 -side-on N₂ and the η^2 -ethylene coordinate bonds. (ii) The electron distribution in the N2 ligand has not yet been unambiguously examined: It has been believed that higher negative charge is present at the terminal N atom,11 whereas some ab initio MO calculations have given the higher negative charge at the coordinating N atom.⁷ Finally, (iii) no conclusive discussion has been presented for the reason why not the η^2 -side-on but the η^1 -end-on N₂ complex is usually found, whereas several authors have discussed the relative stability of the η^1 -end-on and η^2 -side-on coordination of N₂ in terms of the σ -donation and π -back-donation.4-6

In this work, an ab initio MO study of $RhCl(PH_3)_2L$ (L = η^1 -end-on N₂, η^2 -side-on N₂, CO, HCN, HNC, NH₃, and C₂H₄) is presented. These complexes are chosen here for the following reasons: (a) The RhCl(PH_3)₂ fragment is very versatile for co-ordination of various ligands.¹² Therefore, the N₂ coordination bond can be compared with the similar ligands, such as CO, HCN, and HNC, and is expected to be characterized clearly. (b) Two modes of N₂ coordination, the η^1 -end-on and η^2 -side-on, have been discussed in $RhCl(PH_3)_2(N_2)$, previously.^{12,13} (c) Although the N-N distance of N_2 complexes is usually longer than that of the free N2 molecule, the rather short N-N distance has been reported in Rh¹-N₂ complexes.¹³ It is worthwhile to study theoretically the N-N distance of $Rh^{I}-N_{2}$ complexes. (d) Because the wellknown Wilkinson complex is composed of Rh(I), a characterization of the Rh(I) coordinate bond is important in the chemistry of transition-metal complexes and their catalysis. Through this MO study, the authors hope to present a convincing discussion on the N₂ coordination modes and to characterize the N₂ coordinate bond and the Rh(I) coordinate bond, by comparing with bonds of similar ligands and Ni(0) complexes, respectively.

Computational Procedure

Ab initio LCAO SCF MO calculations¹⁴ were carried out for the closed-shell (singlet) state, as it is known that a square-planar Rh(I) complex has $(4d)^8$ configuration and takes a closed-shell singlet in the ground state. The basis sets used were the 4-31G

- (10) Darensbourg, D. J. Inorg. Chem. 1971, 10, 2399. (11) Pombeiro, A. J. L., ref 3e, Chapter 6, p 153.

- (11) Folinetto, A. J. L., let Sc. Chapter 6, p 155.
 (12) Busetto, C.; D'Alfonso, A.; Maspero, F.; Perego, G.; Zazzeta, A. J. Chem. Soc., Dalton Trans. 1977, 1828.
 (13) (a) Hoffmann, P. R.; Yoshida, T.; Okano, T.; Otsuka, S.; Ibers, J. A. Inorg. Chem. 1976, 15, 2462. (b) Thorn, D. L.; Tulip, T. H.; Ibers, J. A. J. Chem. Soc., Dalton Trans. 1979, 2022.
- (14) IMSPACK Program for ab initio MO calculations was used, which consists of GAUSS70, HONDO, and many original routines (Morokuma, K.; Kato, .; Kitaura, K.; Ohmine, I.; Sakai, S.; Obara, S. IMS Computer Program Library, The Institute for Molecular Science, 1980, Program 0372).

Figure 1. Coordinate system and assumed geometrical parameters of RhCl(PH₃)₂L (L = η^1 -end-on N₂, η^2 -side-on N₂, CO, HCN, HNC, C_2H_4 , or NH_3).

set for ligand atoms,¹⁵ and the [6s5p4d] contracted set for the Rh atom.¹⁶ This [6s5p4d] set was contracted from the (14s10p8d) primitive Gaussian set, which was modified from (14s8p7d) by deleting the most diffuse s-type function and adding an s-type (exponent = 0.20), two p-type (0.30 and 0.15), and a d-type (0.10) function.¹⁷ s-type functions, arising from the totally symmetric linear combination of d-type functions, were removed from the basis set. This contracted basis set is double- ζ quality for valence s and p orbitals and triple- ζ quality for valence d orbital.

The energy decomposition analysis (EDA) was performed in order to investigate the coordinate bond nature in detail. The EDA scheme, reported elsewhere,¹⁸ is briefly described here; the binding energy (BE) is defined as a stabilization of RhCl(PH₃)₂L relative to $RhCl(PH_3)_2$ and L taking the respective equilibrium structures and is given as follows: BE = INT + DEF, where the interaction energy (INT) means the stabilization resulting from the interaction between $RhCl(PH_3)_2$ and L taking the deformed structures as in the complex, and the deformation energy (DEF) corresponds to the destabilization energy required to deform L from its equilibrium to the distorted structure. INT is further divided into various chemically meaningful interactions such as the electrostatic (ES), the exchange repulsion (EX), the forward charge transfer (FCTPLX), the back charge transfer (BCTPLX), and the higher order mixing term (R). These interactions included in the EDA are schematically shown in Scheme I: FCTPLX includes the charge transfer from L to RhCl(PH₃)₂, the polarization of $RhCl(PH_3)_2$, and their coupling terms. BCTPLX also includes the charge transfer from $RhCl(PH_3)_2$ to L, the polarization of L, and their coupling terms. Thus, FCTPLX and BCTPLX correspond to the donative and back-donative interactions, respectively.

Geometries and Their Optimization

RhCl(PH₃)₂L has a square-planar structure, as shown in Figure The Rh-Cl and Rh-P bond lengths were taken to be 2.3095 and 2.355 Å, respectively, by referring the structure of RhCl(P $i-Pr_3)_2L$ (L = N₂ or C₂H₄).¹² Although the observed PRhCl angle differs slightly from 90°, this was assumed to be 90° for simplicity. The geometry of the PH₃ ligand was taken from the experimental structure of uncomplexed PH₃.^{19a} These geometrical parameters

^{(7) (}a) Murrell, J. N.; Al-Derzi, A.; Leigh, G. L.; Guest, M. F. J. Chem. Soc., Dalton Trans. 1980, 1425. (b) Ondrechen, M. J.; Ratner, M. A.; Ellis, D. E. J. Am. Chem. Soc. 1981, 103, 1656.

<sup>D. E. J. Am. Cnem. Soc. 1981, 103, 1656.
(8) (a) Yamabe, T.; Hori, K.; Minato, T.; Fukui, K. Inorg. Chem. 1980, 19, 2154. (b) Yamabe, T.; Hori, K.; Fukui, K. Inorg. Chem. 1982, 21, 2046.
(c) Yamabe, T.; Hori, K.; Fukui, K. Inorg. Chem. 1982, 21, 2816.
(g) (a) Finn, F.; Jolly, W. L. Inorg. Chem. 1972, 11, 1434. (b) Binder, H.; Sellmann, D. Angew. Chem., Int. Ed. Engl. 1973, 12, 1019. (c) Chatt, J.; Elson, C. M.; Hooper, N. E.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1975, 2392</sup> 1975. 2392.

⁽¹⁵⁾ Ditchfield, R.; Hehre, W. J.; Pople, J. A. J. Chem. Phys. 1971, 54. 724.

⁽¹⁶⁾ Hyla-Kryspin, L.; Demuynck, J.; Strich, A.; Bénard, M. J. Chem. Phys. 1981, 75, 3954.

⁽¹⁷⁾ The 14s primitives are contracted as groups of 6s, 2s, 2s. 1s. and 1s in a decreasing order of exponents with the contraction coefficients taken from ref 16. Similarly, the 10p and 8d primitives are grouped into 4p, 2p, 2p, 1p and 4d, 2d, 1d, 1d, respectively.

^{(18) (}a) Morokuma, K. Acc. Chem. Res. 1977, 10, 294. (b) Kitaura, K.; Morokuma, K. Int. J. Quantum Chem. 1976, 10, 325. (c) Kitaura, K.; Sakaki, S.; Morokuma, K. Inorg. Chem. 1981, 20, 2292.

Table I. Optimized Geometrical and Experimental Parameters (Å)

			free	ligand
complexes	opt	obsd	opt	obsd
RhCl(PH ₃) ₂ -	Rh-N = 2.06	1.970-1.88513		
$(\eta^{1} - N_{2})$	N-N = 1.08	1.074-0.958 ¹³	1.08520	1.094 ^{19b}
$RhCl(PH_3)_2$ -	Rh-N = 2.70			
$(\eta^2 - N_2)$	N-N = 1.09			
$RhCl(PH_3)_2$ -	Rh-C = 2.36	2.12212		
(C_2H_4)	C-C = 1.34	1.319 ¹²	1.316 ¹⁵	1.339 ¹⁹⁶
	$\theta^a = 7^{\circ}$			
$RhCl(PH_3)_2(CO)$	Rh-C = 1.94	1.85-1.7721		
	C-O = 1.13	1.123-1.14 ²¹	1.128 ²⁰	1.1281 ¹⁹⁶
$RhCl(PH_3)_2$ -	Rh-C = 1.99			
(HNC)	C - N = 1.16		1.162	1.165 ^b
RhCl(PH ₃) ₂ -	Rh-N = 2.10			
(HCN)	C-N = 1.14		1.140	1.156 ¹⁹⁶
$RhCl(PH_3)_2$ -	Rh-N = 2.22	2.23 ^{19a}		
$(NH_3)^c$				

^a The bending back angle of CH_2 . ^bCited in ref 20. ^cOptimization was carried out, for the experimental geometry of NH_3 .

were fixed during optimization. The Rh-L distance and the geometry of L were optimized independently with each other. Two kinds of structures are possible in the η^2 -side-on N₂ complex and C_2H_4 complex: in one, the η^2 -N₂ and C_2H_4 are placed perpendicularly to the RhCl(PH₃)₂ molecular plane, and in another, they are placed in the RhCl(PH₃)₂ plane. In RhCl(PH₃)₂(η^2 -N₂) both structures were examined at N-N = 1.085 Å and Rh-N₂(the center of N_2) = 2.07 Å. The perpendicular structure is more stable than the in-plane structure by ca. 11 kcal/mol, perhaps due to the less steric repulsion and the stronger π -back-donation from Rh d π to N₂; in fact, the N₂ electron population is larger in the perpendicular structure than in the in-plane structure by ca. 0.05e, and correspondingly the Rh d π orbital population is less in the former than in the latter by ca. 0.05e. The C_2H_4 complex has been also reported experimentally to take a perpendicular structure.¹² Hereafter, only a perpendicular structure was examined in the η^2 -N₂ and C₂H₄ complexes.

The optimized bond distances and bond angles are listed in Table I, compared with their experimental values and/or the geometrical parameters of free ligands. The Rh-L distances are overestimated by ca. 0.1 Å in the η^1 -N₂ and CO complexes and by ca. 0.24 Å in the C_2H_4 complex, but excellent agreement was found between the calculated and experimental values of the $Rh-NH_3$ distance. The overestimation found in the $Rh-N_2$, Rh-CO, and Rh- C_2H_4 distances seems rather large at this level of calculation, and several reasons are considered: The first is the somewhat rough optimization technique; the Rh-L distance was varied by 0.1 Å keeping the RhCl(PH₃)₂ geometry fixed, and both Rh-L distance and geometry of L were optimized independently with each other. The potential curve with respect to the Rh-L distance is very shallow and the more detailed optimization would offer better results. The second is neglect of the electron correlation. The third is the missing of relativistic effect in MO calculation, which tends to yield rather long bond distances.²² Although these factors are important, the large size of the examined complexes prevents us from carrying out further calculations. Nevertheless, the present results seem sufficient for qualitative discussion about coordination modes and bonding nature, because the relative stabilities of η^1 -end-on and η^2 -side-on modes were well reproduced by the present calculations. Further, the N-N and C-O distances calculated agree well with the experimental values. Both calculated and experimental N-N distances of the η^1 -N₂ complex are slightly shorter than those corresponding to free N₂ molecule, and also the C-O distance is calculated to change little upon the coordination. This rather short N-N distance will be discussed later.

Results and Discussion

Coordination Modes: η^1 -End-on vs. η^2 -Side-on Modes: As shown in Table II, the η^1 -end-on N₂ complex is more stable than the η^2 -side-on complex by ca. 16 kcal/mol, and the η^2 -side-on mode has very small binding energy. The difference in binding energy between two coordination modes is comparable with the activation enthalpy estimated for the intramolecular linkage isomerization of N₂ in [Ru(NH₃)₅(N₂)]²⁺, where the isomerization is considered to proceed through the η^2 -side-on structure.²³

Now, let us examine why the η^1 -end-on mode is more stable than the η^2 -side-on mode. In the equilibrium structure, the η^2 -side-on complex has small EX destabilization and small stabilization due to ES, FCTPLX, and BCTPLX, whereas the η^1 -end-on mode suffers from large EX destabilization but receives large stabilization from ES, FCTPLX, and BCTPLX. This difference of energy characteristics between two modes comes from the fact that in the η^2 -side-on mode the Rh-N₂ distance is much longer than in the η^1 -end-on mode. To find the intrinsic difference between these two modes, we had better compare energy components at the same Rh-N2 distance. However, it is difficult to define the same Rh-N₂ distance for the different coordination modes. Here, we consider the EX repulsion as a measure of "interfragment distance" between $RhCl(PH_3)_2$ and N_2 for the following reason:²⁴ the EX repulsion depends on contact of electron clouds between two fragments, RhCl(PH₃)₂ and N₂, and, therefore, the same EX value corresponds to the comparable interfragment distance. The EX value of the η^1 -end-on N₂ complex (54.1 kcal/mol) is chosen as a standard for a comparison between the η^1 -end-on and η^2 -side-on modes, and the Rh-N₂ distance of the η^2 -side-on mode is shortened to give this EX value. As shown in Table II, such a comparison offers a clear contrast between these two modes; although both coordination modes receive similar stabilization from BCTPLX, the η^1 -end-on mode has much larger ES and slightly larger FCTPLX stabilizations than the η^2 -side-on mode does. It is noted that BCTPLX, corresponding to the back-donative interaction, does not influence the relative stability of the two coordination modes, contrary to the suggestion of Hoffmann et al. that the d^n (n > 4) metal prefers the η^1 -end-on N₂ coordination to the η^2 -side-on mode, due to the larger π -back-donative interaction than that of the η^2 -side-on mode.6

It is interesting to compare the η^2 -side-on N₂ complex with the C_2H_4 complex, because C_2H_4 , unlike N₂, can ligate to Rh(I) by way of η^2 -side-on coordination to form a stable complex. Again, the comparison was carried out at the interfragment distance giving the same EX value (66.0 kcal/mol). As shown in Table II, the Rh-C₂H₄ complex is more stable than the η^2 -side-on N₂ complex because of much larger ES and slightly larger FCTPLX interactions. These results suggest that the ES interaction seems to play a key role in determining the coordination modes of N_2 . The ES potential map of N₂ is examined and shown in Figure 2A, where positive ES potential (given by dashed lines) means destabilization of a positive charge and negative ES potential (given by solid lines) means the stabilization. Apparently, the positive ES region expands perpendicularly to the N=N bond, but the negative region expands toward the outside of N₂ bond along the N-N axis. This feature of ES potential, corresponding with the negative quadrupole moment of N_2 ,²⁵ comes from the sufficient electron accumulation on the lone pair region, enough to compensate ES repulsion due to charge of an N nucleus, but

^{(19) (}a) Sutton, E. "Tables of Interatomic Distances and Configuration of Molecules and Ions"; Chemical Society: London, 1958. (b) Herzberg, G. "Molecular Spectra and Molecular Structure"; Van Nostrand Reinhold: New York, 1950; Vol. I, III.

⁽²⁰⁾ Binkley, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939.

^{(21) (}a) Dahl, L. F.; Martell, C.; Wampler, D. L. J. Am. Chem. Soc. 1961,
83, 1761. (b) Hoare, R. J.; Mills, O. S. J. Chem. Soc., Dalton Trans. 1972,
2141.

⁽²²⁾ Ziegler, T.; Snijders, J. G.; Baerends, E. J. J. Chem. Phys. 1981, 74, 1271.

⁽²³⁾ Armor, J. A.; Taube, H. J. Am. Chem. Soc. 1980, 92, 2560.
(24) (a) Sakaki, S.; Kitaura, K.; Morokuma, K. Inorg. Chem. 1982, 21,

 ^{(24) (}a) Sakaki, S.; Kitaura, K.; Morokuma, K. Inorg. Chem. 1982, 21,
 760. (b) Sakaki, S.; Kitaura, K.; Morokuma, K.; Ohkubo, K. Inorg. Chem.
 1983, 22, 104.

⁽²⁵⁾ Buckingham, A. D. Adv. Chem. Phys. 1967, 12, 107.

⁽²⁶⁾ Similar discussion has been described by Kollman. Kollman, P. J. Am. Chem. Soc. 1977, 99, 4875.

Table II. BE, DEF, INT, and Energy Components between RhCl(PH₃)₂ and L (L = η^1 -end-on N₂, η^2 -side-on N₂, C_2H_4 , CO, HCN, HNC, or NH₃) at Equilibrium Structure (kcal/mol)

			η^2 -N ₂							
L	C_2H_4	2.246 ^a	2.70 ^b	2.25ª	η^1 -N ₂	CO	HNC	HCN	NH ₃ ^c	
BE	-24.0	1.9	-5.7	0.0	-21.5	-35.8	-42.5	-26.5	-31.3	
DEF	3.2	0.1	0.1	0.1	~ 0	~0	~0	~ 0	0°	
INT	-27.2	1.8	-5.8	-0.1	-21.5	-35.8	-42.5	-26.5	-31.3	
ES	-52.6	-26.7	-1.2	-21.4	-39.2	-90.7	-94.5	-47.9	-58.1	
EX	66.0	66.0	7.1	54.1	54.1	121.5	111.5	52.7	50.1	
FCTPLX	-16.2	-11.1	-4.1	-9.8	-13.0	-27.9	-26.2	-13.8	-15.4	
BCTPLX	-17.6	-20.1	-4.6	-17.3	-17.7	-32.7	-25.5	-14.0	-5.7	
R	-6.8	-6.3	-3.1	-5.7	-5.7	-6.1	-7.8	-10.0	-2.2	

^a The Rh-N₂ distance is shortened keeping the geometries of the other part fixed, to give the same EX value as that of the Rh- C_2H_4 or Rh- η^1 -N₂ complex. ^b The equilibrium structure. ^cNo optimization was carried out for the NH₃ part, because the 4-31G basis set gives poor results about the NH₃ geometry.

Figure 2. ES potentials of N₂ and C₂H₄. (a) ± 0.02 , ± 0.01 , ± 0.005 , 0.0. (--) Negative value (stabilization of e⁺); (---) positive value (destabilization of e⁺); (---) 0.0.

insufficient electron accumulation on the π -orbtal region, not enough to compensate the ES repulsion due to charges of two N nuclei. This ES potential map indicates that the ES stabilization can be obtained when a positive metal ion such as Rh(I) approaches to N₂ along the N \equiv N bond axis, i.e., by way of η^1 -end-on coordination, but that the ES destabilization would arise when a positive chemical species approaches to N₂ perpendicularly to the N=N bond, i.e., by way of η^2 -side-on coordination.²⁷ Then ES potentials of the η^2 -side-on N₂ and C₂H₄ ligands are compared with each other, as shown in Figure 2B, where ES potentials are given as a function of distance from these ligands. Though the positive ES potential is observed for the η^2 -N₂, the ES potential of C_2H_4 is negative in the region of coordinate bonding distance. This ES potential, corresponding with positive quadrupole moment of C_2H_4 , is probably due to the negative charge of the C atom and the sufficient electron accumulation in the π -orbital region, enough to compensate charges of two C nuclei. Thus, the negative ES potential of C_2H_4 offers the large ES stabilization to the

(27) Actually, the negative ES interaction was obtained even in RhCl-(PH₃)₂(η^2 -N₂). This is not strange, because the ES interactions also arise between the N₂ ES potential and RhCl(PH₃)₂ electron cloud and between the RhCl(PH₃)₂ ES potential and the N₂ electron cloud, which would lead to ES stabilization.

Table III. Changes in Mulliken Populations Caused by Various Interactions in $RhCl(PH_3)_2(\eta^{1}-N_2)$

						_
	total	EX	FCTPLX	BCTPLX	R	-
Rh	-0.077	-0.005	0.004	-0.073	-0.003	
4d	-0.118	-0.007	-0.045	-0.077	0.011	
5sp	0.034	0.001	0.044	0.007	-0.018	
N ₂	0.078	0.0	-0.030	0.079	0.029	
N_c^a	0.051	-0.013	-0.035	0.057	0.042	
N ^b	0.027	0.013	0.005	0.022	-0.013	

^a The coordinating N atom. ^b The terminal N atom.

 $Rh^1-C_2H_4$ complex, unlike the η^2 -side-on N_2 complex. In other words, the ES potential favors the η^1 -end-on N_2 and C_2H_4 complexes, but disfavors the η^2 -side-on N_2 complex.

Now, the FCTPLX interaction should be discussed. This interaction depends on the energy and expanse of donor orbital. In the η^1 -end-on N₂ coordination, the σ -lone pair orbital of N₂ plays a key role of a donor orbital, and in the η^2 -side-on N₂ and C₂H₄ coordinations, the π -orbital is important as a donor orbital. Both the σ -lone pair and the π -orbitals of N₂ lie similarly in energy (σ -lone pair = -17.0 eV and π -orbital = -17.1 eV),²⁸ but due to hybridization, the σ -lone pair orbital extends toward Rh(I) more than the π -orbital does. Thus, FCTPLX stabilization is slightly larger in the η^1 -end-on N₂ complex than in the η^2 -side-on N₂ complex. The π -orbital of C₂H₄ (-10.1 eV) is higher in energy than that of N₂, leading to the larger FCTPLX stabilization of the C₂H₄ complex than that of the η^2 -side-on N₂ complex.

In conclusion, the η^2 -side-on N₂ complex is less stable than η^1 -end-on N₂ and C₂H₄ complexes, mainly due to a smaller ES stabilization and secondarily due to a slightly smaller FCTPLX stabilization.

Bonding Nature and Electron Distribution of the η^1 -End-on N₂ Complex. The bonding nature of the η^1 -end-on N₂ complex will be investigated. As shown in Table II, the stabilization of BCTPLX is larger than that of FCTPLX, which is in accordance with the experimental results of ESCA⁵ and dipole moment.⁶ Electron distribution is given as Mulliken population (Table III) and difference density maps (Figure 3), where N_c represents the coordinating N atom and N_t is the terminal N atom. Although electron distribution based on the Mulliken population is slightly

⁽²⁸⁾ These orbital energies were calculated for the deformed structure of ligands as in the Rh(I) complexes.

Figure 3. Difference density maps of RhCl(PH₃)₂(η^1 -N₂) (a) [RhCl-(PH₃)₂(η^1 -N₂)]-[RhCl(PH₃)₂]-[N₂]: (--) increased density, (---) decreased density. (b) Total difference density; ±0.005, ±0.0005. (c) FCTPLX, BCTPLX, and EX difference density; ±0.0001, ±0.001.

different from that based on the difference density map,²⁹ both Mulliken population and difference density map represent that N_c is more negatively charged than N_t . This result agrees with ab initio MO studies of $Ru(NH_3)_2(N_2)^{2+}$, $Mo(PH_3)_4(N_2)_2$, and $Fe(NH_3)_5(N_2)^{2+.7}$ But in ESCA studies,⁹ two peaks of N 1s ionization were observed and the higher N 1s binding energy was assigned to the N_c 1s ionization, suggesting that N_c was less negatively charged than Nt. Also in ab initio MO studies of $Mo(NH_3)_5(N_2)$ and $Cr(PH_3)_4(N_2)^{7a,8b}$ and EH-MO studies of several N_2 complexes,^{6,30} N_t has been calculated to possess higher negative charge than N_c , which has been explained by allyl-type orbital mixing (Scheme II).³⁰ Here, the electron distribution of N_2 is examined in more detail through the component analysis of Mulliken population (Table III) and difference density maps (Figure 3B-D). The EX interaction pushes electron cloud to the terminal N_t atom, the FCTPLX interaction decreases electron population of the $N_{\rm c}$ atom, but the BCTPLX increases electron population of the N_c atom. Because the contribution of BCTPLX is the largest, the N_c atom is more negatively charged than the N_t atom.

Table IV. Calculated N 1s Ionization Energy (eV)

	RhCl($PH_3)_2(\eta^1$	N ₂)		free N ₂	
	Koopmans ^a	∆SCF ^a	relaxatn energy	Koopmans	ΔSCF ^a	relaxatn energy
N _c	428.19	412.20	15.99	426.66	412.60	14.06
N,	427.88	411.21	16.67			
ΔI_{p}^{b}	0.31	0.99				

^aSee ref 32. ^bThe difference between the N_c 1s and N_t 1s ionization energies.

In this connection, it is worth examining the allyl-type orbital mixing. As shown in Scheme II, the HOMO of $RhCl(PH_3)_2(N_2)$ mainly consists of Rh d π , with which the N₂ π^* orbital mixes in a bonding combination but the $N_2 \pi$ -orbital interacts in an antibonding way.³¹ Consequenty, the $N_t p_{\pi}$ orbital contributes to the HOMO more than $\bar{N_c} \, p_{\pi}$ does. In fact, the HOMO given by the present MO calculation has the shape similar to HOMO shown in Scheme II. On the other hand, the Rh d π and N₂ π^* orbitals mix into the more stable $N_2 \pi$ -orbital in a bonding combination with each other, yielding the ϕ_{π} orbital (Scheme II), in which the contribution of $N_c p_{\pi}$ orbital is larger than that of N_t p_{π} . These two MO's, HOMO and ϕ_{π} , result in different electron distribution of N₂; in the HOMO, N_t has more electron population, but in ϕ_{π} , N_c has more electron population. Thus, even if these occupied MO's are examined, it is difficult to reveal which of the two's, N_c or N_t , is more negatively charged. In such a case, examination of the virtual MO would give an answer. When the contribution of $N_t p_{\pi}$ is larger than that of $N_c p_{\pi}$ in the virtual space, electrons are accumulated on N_c more than on N_t and vice versa. The LUMO is the N₂ π^* orbital in main character. According to the orbital mixing rule,³¹ Ru d π and N₂ π orbitals mix into LUMO in an antibonding combination with each other, and, therefore, the LUMO should have a shape as shown in Scheme II. This shape requires that N₁ is more negatively charged than N_c. However, the LUMO obtained by the present MO calculation is contributed from the $N_t p_{\pi}$ orbital more than the $N_c p_{\pi}$ orbital (Scheme II). The shape of calculated LUMO means that N_c is more negatively charged than N_t, as shown in Figure 3 and Table III, contrary to the allyl-type orbital mixing. Therefore, the orbital mixing seems unimportant, and other factors are expected to play a key role in determining the N_2 electron distribution of $RhCl(PH_3)_2(N_2)$. As a candidate of such factors, the positive charge of Rh(I) would be considered. This positive charge would polarize the N_2 electron cloud toward Rh(I), and $N_{\rm c}$ would be more negatively charged than $N_{\rm t}$. In fact, BCTPLX, which increases the electron population of N_c, includes the polarization of the N_2 ligand as shown in Scheme I.

The above discussion also suggests that the electron distribution of N₂ is very sensitive to kinds of metals and ligands, as has been described,¹¹ because two factors, the orbital mixing and the positive charge of the central metal, cause different effects on the N₂ electron distribution: N_c is more negatively charged than N_t if the latter factor is more important, as in the case of complexes with highly charged central metal such as Mo(PH₃)₄(N₂)₂ (Mo = +0.65*e* Mulliken charge), Fe(NH₃)₅(N₂)²⁺ (Fe = +1.50*e*), Ru(NH₃)₅(N₂)²⁺ (Ru = +0.96*e*),⁷ and RhCl(PH₃)₂(N₂) (Rh = +0.49*e*), but N_t has larger electron population if the former is more important, as in the case of complexes with less charged central metal such as Mo(NH₃)₅(N₂) (Mo = +0.40*e*).⁷

The next problem is ESCA assignment of N ls ionization. Although no ESCA study has been reported for RhCl(PH₃)₂(N₂), the higher N ls binding has been usually assigned to the N_c ls ionization in ESCA studies of N₂ complexes,⁹ suggesting that N_c is less negatively charged than N_t, in conflict with the present calculated electron distribution. According to Koopmans theorem, however, the present MO calculation showed that the N_c ls ionization was higher in energy than the N_t ls ionization (Table IV).²⁸ Further, the N ls ionization energy was calculated through

⁽²⁹⁾ According to Mulliken populations, both N_c and N_t are negatively charged, but the difference density map suggests that N_t seems not to be negatively charged but to be slightly positively charged. This discrepancy is considered to come from the artificial picture of Mulliken population analysis when diffuse Gaussians are included in basis set.

⁽³¹⁾ Inagaki, S.; Fukui, K. Chem. Lett. 1974, 509. Inagaki, S.; Fujimoto, H.; Fukui, K. J. Am. Chem. Soc. 1976, 98, 4054.

Figure 4. ES potentials of η^1 -N₂, CO, HNC, HCN, and RhCl(PH₃)₂. Coordinating atom is placed at R = 0.0.

 Δ SCF technique by using the RHF-MO method;³² apparently, the N 1s ionization potential of $RhCl(PH_3)_2(N_2)$ is lower in energy than that of the free N₂ molecule, and the N_c 1s ionization is higher in energy than the N_t 1s ionization (Table IV). A reason why a simple relation cannot be found between the N 1s ionization energy and the N electron population should be examined. Generally speaking, the core binding energy is equated to a term involving the net charge of the atom possessing the ionized core orbital plus the electrostatic potential due to the charges of all the other atoms minus the relaxation energy associated with the core ionization.^{33a} If only the N atomic charge is considered, the N_c 1s ionization should be lower in energy than the N_t 1s ionization. However, the highly positive charge of Rh(I) leads to positive ES potential (destabilization of positive charge e⁺), as shown in Figure 4. The ES potential at the position of ca. 2.0 Å (the position of N_c) is more positive than that at ca. 3.0 Å (the position of N_t), yielding a larger stabilization of N_c 1s electron than that of N_t is electron and, conversely, yielding a larger destabilization of the hole state on N_c 1s than that of N_t 1s. Relaxation energies, calculated here, are shown in Table IV; the N_t 1s ionization causes larger relaxation energy than the N_c 1s ionization does.^{33b} The above discussion suggests that the Rh(I) positive charge and the relaxation energy increase the N_c 1s ionization energy more than the N_c negative charge lowers it, and, consequently, the N_c 1s ionization is higher in energy than the N_t 1s ionization. Therefore, present electron distribution does not contradict with the ESCA assignment,³⁴ and caution is nec-

Figure 5. Energy components between $RhCl(PH_3)_2$ and $\eta^1 N_2$ vs. Rh-N distance. Energy components of the HCN, HNC, and CO complexes are plotted at the interfragment distance giving the same EX value.

essary when the net charge is deduced from a ESCA chemical shift in a system containing charged atoms.

N≡N Bond Length and π -Back-Donation. The N≡N distance is calculated to change little by the coordination,³⁵ as shown in Table I, whereas the π -back-donation, leading to the N≡N bond lengthening, considerably contributes to the N₂ coordinate bond. Of course, the BCTPLX interaction, corresponding to the backdonation, weakens the N≡N bond, as shown by the difference density map of BCTPLX (Figure 3C), in which the electron density is reduced in the N≡N bonding region. The FCTPLX interaction, corresponding to donative interaction, also reduces the electron density is reduced in this region by coordination. Thus, both FCTPLX and BCTPLX are expected to lengthen the N≡N bond distance, and the rather short N≡N distance of the Rh^I-N₂ complex cannot be attributed to FCTPLX and BCTPLX interactions.

On the other hand, it is shown by the total difference density map that the N_c atom is negatively charged but the N₁ atom seems to have slightly positive charge. This electron distribution would offer the electrostatic attraction between two N atoms, and the N \equiv N distance would be hardly lengthened in RhCl(PH₃)₂(N₂).

Comparison of the Coordinate Bond between the η^1 -End-on N₂ and the Other Ligands. Because HCN, HNC (models of CH₃CN and CH₃NC, respectively), and CO have a lone pair orbital and two sets of π and π^* orbitals, these ligands can coordinate to metal through σ -donation of the lone pair electrons and π -back-donation into the π^* orbitals, as N₂ does. It is worthwhile to characterize the coordinate bond of the η^1 -end-on N₂ ligand by comparison with those of the similar ligands such as HCN, HNC, and CO. The binding energies (BE) between RhCl(PH₃)₂ and these ligands are given in Table II, from which the coordination is expected to become weak in the order HNC > CO > HCN > η^1 -end-on N₂. First, the relative importance of σ -donation and π -backdonation is compared at the equilibrium structure: As shown in Table II, BCTPLX ~ 1.4FCTPLX in the η^1 -end-on N₂ complex, BCTPLX ~ 1.2FCTPLX in the CO complex, and BCTPLX ~

⁽³²⁾ Kosugi, N.; Kuroda, H. Chem. Phys. Lett. 1980, 74, 490. In the SCF calculations, the GSCF2 program written by Kosugi, N. (Tokyo University), was used, in which the spherical d-oribtals arising from the totally symmetric linear combination of d-type orbitals were not excluded.

^{(33) (}a) For example: Gelius, U. *Phys. Scr.* 1974, 9, 133. (b) The relaxation energy for the N_c Is ionization would be expected to be larger than that for the N₁ Is ionization, because N_c directly interacts with the RhCl(P-H₃)₂ part. The present calculation, however, shows the opposite trend. Through relaxation, many electrons flow into the p_r orbitals of the ionized N atom. The large relaxation for the N₁ Is ionization would be probably due to allyl-type orbital mixing, which accelerates such electron flow into the N₁ p_r orbitals.

⁽³⁴⁾ Of course, in many studies, two peaks of N Is ionization are considered to be due to the satelite of N Is ionization. (For example: Freund, H. J.; Pulm, H.; Dick, B.; Lange, R. Chem. Phys. **1983**, 81, 99.) Even so, it is not meaningless to reveal that the N Is ionization potential cannot always be related to the electron population of N atom in the η^1 -end-on N₂ complexes.

⁽³⁵⁾ The possibility that the thermal vibration incorrectly gives a rather short N-N distance cannot be neglected, as described in some experimental works.¹³ However, from the present MO study, it seems intrinsic that the N-N distance is not lengthened so much in $Rh^{1}-N_{2}$ complex.

Table V. Ligand Properties: Mulliken Charge of the Coordinating Atom (MC) π , π^* , and Lone Pair Orbital Energies^a

	-				•	
HNC	СО	HCN	η ¹ -N ₂	$\eta^2 - N_2$	C ₂ H ₄	NH ₃
+0.30	+0.40	-0.34	0.0	0.0	-0.33	-0.92
		Orbital Ene	rgy (eV)			
-14.1	-17.4	-13.6	-17.1	-17.0	-10.1	
5.6	4.0	5.4	4.4	4,3	4.9	
-13.0	-14.9	-15.6	-17.1	-17.1		-11.0
	HNC +0.30 -14.1 5.6 -13.0	HNC CO +0.30 +0.40 -14.1 -17.4 5.6 4.0 -13.0 -14.9	HNC CO HCN +0.30 +0.40 -0.34 Orbital Ene -14.1 -17.4 -13.6 5.6 4.0 5.4 -13.0 -14.9 -15.6	HNC CO HCN η^1 -N ₂ +0.30 +0.40 -0.34 0.0 Orbital Energy (eV) -14.1 -17.4 -13.6 -17.1 5.6 4.0 5.4 4.4 -13.0 -14.9 -15.6 -17.1	HNC CO HCN η^1 -N ₂ η^2 -N ₂ +0.30 +0.40 -0.34 0.0 0.0 Orbital Energy (eV) -14.1 -17.4 -13.6 -17.1 -17.0 5.6 4.0 5.4 4.4 4.3 -13.0 -14.9 -15.6 -17.1 -17.1	HNC CO HCN η^1 -N ₂ η^2 -N ₂ C ₂ H ₄ +0.30 +0.40 -0.34 0.0 0.0 -0.33 Orbital Energy (eV) -14.1 -17.4 -13.6 -17.1 -17.0 -10.1 5.6 4.0 5.4 4.4 4.3 4.9 -13.0 -14.9 -15.6 -17.1 -17.1

^a For the distorted structure as in the total complex. ^b Mulliken charge of the coordinating atom.

FCTPLX in the other complexes. Thus, the back-donation is more important in the η^1 -end-on N₂ complex than in the other ligands.

Now, each energy component will be examined in more detail. The energy components of the η^1 -end-on N₂ complex were first obtained at several Rh-N2 distances, and they are connected as the "reference curves", as shown in Figure 5. Then energy components of the other Rh-L complexes taking their optimized structures are plotted at the $Rh-N_2$ distance giving the same EX value as the Rh-L complex. Through such plots, the Rh-L coordinate bond is compared with that of the Rh- η^1 -N₂ complex at the similar "interfragment distance"; in this comparison, if the energy component of the Rh-L complex is placed below the reference curve, it means that the Rh-L complex receives the larger stabilization from the interaction than the Rh-N2 complex does and vice versa.³⁶ FCTPLX and BCTPLX of the CO complex are placed below the reference curves, as shown in Figure 5, indicating that the CO complex has stronger donating and back-donating interactions than the η^1 -end-on N₂ complex. These strong FCTPLX and BCTPLX interactions apparently result from the higher orbital energy of the CO lone pair orbital and the lower orbital energy of the CO π^* orbital than the corresponding ones of N_2 (see Table V). The large ES stabilization of CO is also noted in Figure 5. At first glance, this large stabilization seems strange, because the coordinating C atom has positive Mulliken charge. However, CO has a lone pair electron that gives C⁻O⁺ polarity of σ -electrons, and this polarity is expected to lead to a significant ES stabilization with a positive Rh(I) ion. In fact, the CO ligand offers ES potential similar to that of N_2 , in spite of the positively charged C atom, as shown in Figure 4. Also we should consider the situation that the CO and N₂ ligands are placed in the ES potential field of RhCl(PH₃)₂. The ES potential of $RhCl(PH_3)_2$, shown in Figure 4, is positive at the coordinating distance. Because the N nucleus charge is larger than the C nucleus charge, the ES potential of RhCl(PH₃)₂ more destabilizes the η^1 -end-on N₂ coordination than the CO coordination. Consequently, the CO coordination bond is strong due to the large stabilizations of ES, FCTPLX, and BCTPLX.

Coordinate bonds of HCN and HNC receive a considerably larger ES and a slightly larger FCTPLX stabilization but a slightly smaller BCTPLX stabilization than that of η^1 -end-on N₂ does. ES potentials of HNC and HCN are more negative than those of the η^1 -end-on N₂ and CO ligands, as shown in Figure 4, perhaps due to the less positive (in HNC) or more negative (in HCN) Mulliken charge of the coordinating atom (see Table V). Thus, the ES stabilization is large in HCN and HNC coordinations. Also these ligands have the lone pair and π^* orbitals higher in energy than the η^1 -end-on N₂ ligand does (Table V), leading to larger FCTPLX but smaller BCTPLX stabilizations of these complexes than those corresponding to the η^1 -end-on N₂ complex. The strong ES and FCTPLX interactions result in the strong coordinate bonds of HCN and HNC. Of these two ligands, the lone pair orbital of HNC lies considerably higher in energy than that of HCN, and the coordinating C atom of HNC has less nucleus charge than the coordinating N atom of HCN, leading to a larger ES (consider the positive ES potential field of $RhCl(PH_3)_2$) and larger FCTPLX stabilizations of the HNC coordination. As a result, HNC is the strongest ligand for Rh(I). In conclusion, the η^1 -end-on N₂ coordination receives a weaker

ES and FCTPLX stabilization than the other ligands, which seems

Figure 6. Energy components for $RhCl(PH_3)_2(C_2H_4)$ vs. $Rh-C_2H_4$ distance, where energy components for $Ni(PH_3)_2(C_2H_4)$ are plotted at the $Rh-C_2H_4$ distance giving the same EX value.

a main factor for the weak coordination bond of N₂. The BCTPLX interaction of the η^1 -end-on N₂ complex is not always stronger than the other ligands; for example, the CO complex possess the stronger BCTPLX than the η^1 -end-on N₂ complex. However, the relative importance of BCTPLX to FCTPLX is larger in the N₂ coordination than in the coordination of the other ligands, and the strong Lewis basicity is required for the N₂ coordination.

Comparisons between NH₃ and the Other Ligands and between the Rh(I) and Ni(0) Coordinate Bonds. It is interesting to investigate how differently the coordinate bond of non-Werner-type complexes is described from that of Werner-type complexes. Here, the NH₃ coordinate bond, usually found in Werner-type complexes, is compared with the coordinate bonds of N₂, CO, HCN, and HNC. A clear contrast is found in Table II; the NH₃ coordinate bond has larger ES stabilization than EX destabilization, whereas all of the other ligands suffer EX destabilization larger than ES stabilization. Another contrast is also found in BCTPLX; the NH₃ coordination receives much smaller BCTPLX stabilization, due to the absence of low-lying acceptor orbital, whereas the large BCTPLX is present in the coordination of the other ligands. The FCTPLX stabilization of NH₃ is less than those of CO and HNC but is almost the same degree as those of HCN and η^1 -end-on N₂. These results suggest that the coordinate bond of Werner-type complexes would be characterized by large ES stabilization and small BCTPLX stabilization.

Then the Rh-C₂H₄ complex is compared with the Ni(0) complex, though the used basis set for Ni is slightly different from that of Rh.^{18c, 37} Energy components of the Rh-C₂H₄ complex

⁽³⁶⁾ A similar comparison has been carried out for various Ni(0) complexes, and successful discussion has been presented.²⁴

Figure 7. Orbital energy levels of RhCl(PH₃)₂ and Ni(PH₃)₂ near HOMO and LUMO: (a) antibonding coupling between Rh d_{yz} and Cl p_{π} . (b) bonding interaction between Rh d_{yz} and Cl p_{π} . See ref 18c for the MO calculation of Ni(PH₃)₂.

are given at several Rh-C₂H₄ distances in Figure 6, and they are connected as "reference curves", as examined above. The energy components of Ni(PH₃)₂(C₂H₄), previously calculated,^{18c} are plotted in this figure (marked by "•") at the Rh-C₂H₄ interfragment distance giving the same EX value as that of the Ni-C₂H₄ complex. Apparently, the BCTPLX stabilization of the Ni(0) complex is much larger but the FCTPLX stabilization is much less than that corresponding to the Rh-C₂H₄ complex. Some molecular orbitals near HOMO and LUMO of metal fragments are shown in Figure 7. The HOMO (d π) of Ni(PH₃)₂ lies higher in energy than that of RhCl(PH₃)₂, whereas their orbital energies are not so different. However, the acceptor orbital (Ni 4sp_{σ}) of Ni(PH₃)₂ is placed at a substantially high energy level, leading to a very weak σ -donative interaction, but the LUMO (acceptor orbital) of RhCl(PH₃)₂ lies relatively low in energy, yielding a considerable σ -donative interaction.

In summary, $RhCl(PH_3)_2$ possesses the HOMO at a relatively high energy level and the LUMO at a relatively low energy level. Therefore, $RhCl(PH_3)_2$ can form both strong donative and back-donative interactions. In this regard, Rh(I) can be described as a versatile metal ion for the wide range of ligands. In contrast, $Ni(PH_3)_2$ has its HOMO and the acceptor orbital at a much higher energy level and, consequently, can form only a strong back-donative interaction. In other words, only a ligand possessing a good acceptor orbital can coordinate with Ni(0) to form the complex.

Conclusion

First, two coordination modes of N_2 , η^1 -end-on and η^2 -side-on, were investigated in RhCl(PH₃)₂(N₂). Both η^1 -end-on and η^2 side-on coordination modes receive a similar degree of BCTPLX stabilization, but the η^2 -side-on mode has weaker ES and FCTPLX interactions than the η^1 -end-on mode does. The difference in ES interaction between the η^1 -end-on and η^2 -side-on modes results from the negative quadrupole moment of N_2 ; when the positively charged Rh(I) approaches to N_2 along the N-N axis to form the η^1 -end-on N₂ complex, the large ES stabilization is caused by the negative quadrupole moment of N_2 , but, when the Rh(I) approaches to N₂ perpendicularly to the N-N axis, less ES stabilization is caused. The situation becomes different in the η^2 -coordinating C₂H₄ complex; Because C₂H₄ has a positive quadrupole moment unlike N_2 , large ES stabilization is yielded when the Rh(I) approaches C_2H_4 perpendicularly to the C=C bond. The weak donative interaction, FCTPLX, of the η^2 -side-on N₂ complex is considered to result from the lesser expanse of the N₂ π -orbital than that of the N_2 lone-pair orbital and the more stable orbital energy of the N₂ π than of the C₂H₄ π -orbital. Consequently, the η^2 -side-on N₂ complex becomes less stable than the η^1 -end-on N_2 and C_2H_4 complexes.

Second, the electron distribution of the η^1 -end-on Rh¹-N₂ complex was examined; the N_c atom is more negatively charged than the Nt atom, contrary to the expectation based on the orbital-mixing rule. Two factors, the orbital-mixing rule and the N_2 polarization caused by the positively charged central metal, would influence the N_2 electron distribution. The orbital mixing makes N, more negatively charged than N_c, but the positive charge of the central metal makes N_c more negatively charged than N_t. Because two factors yield different effects on the electron distribution, the N_2 electron distribution is very sensitive to the kinds of metals and ligands. In the $Rh^{I}-N_{2}$ complex, the effect of polarization is large, and, therefore, N_c becomes more negatively charged than N_t. The N 1s ionization energy was also studied. It has been believed that the higher N 1s ionization potential is assigned to the N_c 1s ionization, suggesting that N₁ is more negatively charged than N_c. In this work, the N_c 1s ionization is calculated to be higher in energy than the N_t 1s ionization in spite of the more negative charge of N_c. This higher N_c 1s ionization is probably due to the positively charged Rh atom and less relaxation energy. Thus, the higher N_c 1s ionization energy is not in conflict with the larger negative charge of N_c.

Then, the coordinate bonding nature of N₂ was compared with that of similar ligands such as CO, HCN, and HNC. The coordinate bond becomes weak in the order HNC > CO > HCN > η^1 -end-on N₂. The weak η^1 -end-on N₂ coordinate bond is considered to result from the small ES interaction and small donative interaction. In the η^1 -end-on Rh¹-N₂ complex, therefore, the relative importance of back-donation to the donation is larger than in the other complexes.

Finally, the versatile ability of Rh(I) for the ligand coordination is discussed in comparison with the Ni(0) complex. The Rh(I) complex has the HOMO (Rh 4d π) at a considerably higher energy level and the LUMO (Rh 4d σ) at a considerably lower energy level, resulting in both strong donative and back-donative interactions. In contrast, the Ni(0) complex has both donor orbital (Ni 3d π) and acceptor orbital (Ni 4sp $_{\sigma}$) at a considerably higher energy level. Thus, only a ligand possessing a good acceptor orbital can ligate to Ni(0). In this regard, Rh(I) has a versatile ability for coordination of various ligands.

Acknowledgment. We thank Dr. N. Kosugi (Tokyo University) for his kind helps of RHF calculations. S.S. is grateful for support through IMS Joint Studies Program and a Ministry of Education grant. Numerical calculations were carried out at the IMS Computer Center.

⁽³⁷⁾ The usual 4-31G basis set was used for ligand atoms and the [4s3p2d] contracted basis set was used for Ni. See ref 18c for detailed discription.

Registry No. RhCl(PH₃)₂(η^{1} -N₂), 95344-48-2; RhCl(PH₃)₂(η^{2} -N₂), 95344-49-3; RhCl(PH₃)₂(C_{2} H₄), 95344-50-6; RhCl(PH₃)₂(CO), 58201-16-4; RhCl(PH₃)₂(HNC), 95344-51-7; RhCl(PH₃)₂(HCN), 95344-52-8; RhCl(PH₃)₂(NH₃), 95344-53-9; N₂, 7727-37-9; Rh, 7440-16-6.